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APPLICATION OF INTRINSIC DIFFE€EJ!ULATION TO OR6ITA.L 

PROEEEMS INVOLVING CURVILINEAR 

COORDINATE SYSTEMS 

By James C .  Howard 
Ames Research Center 

SUMMARY 

Absolute or i n t r i n s i c  d i f f e ren t i a t ion  has been shown t o  be an e f f ec t ive  
t o o l  f o r  solving a ce r t a in  c l a s s  of vector problems. In  many cases, the  solu- 
t i o n  of problems involving the  r a t e s  of change of vectors may be obtained more 
d i r e c t l y  by t h i s  method than by conventional methods. A s ingle  formula with 
su f f i c i en t  genera l i ty  t o  handle a wide range of problems renders appl icat ion a 
purely mechanical process, requir ing l i t t l e  or no ingenuity on t h e  part of t h e  
analyst. In  order t o  demonstrate i t s  u t i l i t y ,  t h e  method has been used t o  
process ce r t a in  fundamental vectors associated with the  o r b i t s  of planetary 
bodies or space vehicles. 
planetary equations. 
used f o r  obtaining t h e  r a t e  of change of t h e  argument of perifocus of an 

The processing of these vectors leads t o  Lagrange's 
It i s  shown t h a t  the  method has d i s t i n c t  advantages when 

orb it ing b cdy . 
INTRODUCTION 

It i s  wel l  known t o  students of tensor analysis t h a t  problems involving 
the  r a t e s  of change of vectors of any variance a r e  conveniently solved by t h e  
method of covariant and i n t r i n s i c  d i f fe ren t ia t ion .  This method of dealing 
with vectors,  and the  more general  e n t i t i e s  called tensors,  has found l i t t l e  
or no appl icat ion t o  the  problems of ordinary vector analysis  probably because 
a l l  such problems are  amenable t o  solut ion by conventional methods. 
when covariant and i n t r i n s i c  d i f f e ren t i a t ion  are divorced from the complexi- 
t i e s  inherent i n  tensor analysis,  it i s  found t h a t  ce r t a in  problems can be 
solved more d i r e c t l y  and with much l e s s  ingenuity on the  par t  of t h e  analyst  
than i s  required by conventionalmethods. This i s  a consequence of t h e  geo- 
metr ical  s impl i f ica t ion  inherent i n  the method when curv i l inear  coordinates 
a re  used. 
influence of perturbing forces  on t h e  time rates  of change of c e r t a i n  funda- 
mental vectors associated with the  o r b i t s  of planetary bodies or space vehi- 
c les .  When t h i s  i s  done, a more d i r ec t  determination of t h e  r a t e s  of change 
of some of the  o r b i t a l  elements i s  possible.  I n  par t icu lar ,  t he  i n t r i n s i c  
der ivat ive of a vector which l i e s  i n  t h e  o r b i t a l  plane, and points  i n  t h e  
d i rec t ion  of t h e  perifocus, leads more d i rec t ly  t o  a r a t e  of change of t h e  
argument of perifocus which includes the  influence of changes i n  t h e  longitude 
of t h e  ascending node. 
uniquely determined by the  normal t o  i t s  surface, the  or ien ta t ion  of an orbi-  
t a l  plane i n  space i s  determined by the angular momentum vector.  
may be used t o  advantage i n  f inding the  time r a t e s  of change of t he  elements 

However, 

For example, i n t r i n s i c  d i f fe ren t ia t ion  m y  be used t o  determine t h e  

. 

Furthermore, since the or ien ta t ion  of a plane i s  

This f a c t  



defining t h e  or ien ta t ion  of an o rb i t  plane i n  t h e  presence of perturbing 
forces .  
the  angular momentum vector  and hence t h e  r a t e s  of change of o r b i t a l  plane 
inc l ina t ion  and nodal longitude. 
i l l u s t r a t e  t he  u t i l i t y  of t h e  method. Moreover, t h e  method may be applied 
with equal f a c i l i t y  t o  any s i t u a t i o n  i n  which vector  changes a r e  involved. 

The i n t r i n s i c  der iva t ive  m y  be used t o  obtain t h e  r a t e  of change of 

These two examples have been chosen t o  

perturbing force  vector  

NOMENCLATURE 

vector 

contravariant vector  components i n  the  x coordinate system 

covariant vector  components i n  t h e  x coordinate system 

the  semimajor axis 

u n i t  vector  which l i e s  i n  t h e  o r b i t a l  plane and points  i n  the  
d i r ec t ion  of t h e  perifocus 

- 
system of base vectors rec iproca l  t o  a i ( x )  

system of base vectors i n  the  x coordinate system 

contravariant vector  components i n  the  y coordinate system 

covariant vector  components i n  the  y coordinate system 

system of base vectors rec iproca l  t o  b j (y )  

system of base vectors  i n  the  y coordinate system 

eccen t r i c i ty  

vector  lying i n  the  o r b i t a l  plane and pointing i n  t h e  d i rec t ion  
of t h e  per i f  ocus 

-i , -j a a 

angulnr momentum vector 

o r b i t a l  plane inc l ina t ion  

mass of cen t r a l  body 

mass of space vehic le  or planet 



pos i t ion  vector 

coordinate transformation 

time 

ve loc i ty  vector 

components of the  posi t ion vector i n  the  x coordinate system 

components of t h e  posi t ion vector i n  the  y coordinate system 

Chr i s to f f e l  symbol of the  first kind 

Chr i s to f f e l  symbol of the second kind 

constant coef f ic ien ts  

t r u e  anomaly 

eonecke r  d e l t a  

dynamical constant, G(M + m) 

longitude of ascending node l i n e  

argument of perifocus as measured from ascending node l i n e  

w + R  

Superscripts 

indices  of c ontravariance 

Subscripts 

indices  of covariance 

ANALYTICAL CONSIDERATIONS 

Transformation Laws f o r  Scalar Components and Base Vectors 

Scalar components.- When re fer red  t o  a general curv i l inear  coordinate 
system, a vector may be expressed i n  t h e  following form 

3 



If i n  some expression a ce r t a in  index occurs twice, t h i s  means t h a t  the  expres- 
s ion  i s  t o  be summed with respect  t o  t h a t  index f o r  a l l  admissible values of 
t h e  index, t h a t  i s ,  n 

AiEi = z A i E i  

i=i 

- 
where Ai a r e  t he  tensor  components of t h e  vector  A, and Zi ,  a system of 
base vectors. I n  accordance with establ ished notation, tensor  components w i l l  
be denoted by superscr ipts  and t h e  corresponding base vectors by subscr ipts .  
I n  the l i t e r a t u r e ,  these vectors  a r e  re fer red  t o  as contravariant vectors,  t o  
dis t inguish them from other vectors which a r e  denoted by subscr ipts .  For t h e  
problems considered i n  the  present report ,  the  d i s t i n c t i o n  between these vec- 
t o r s  disappears. However, it i s  necessary t o  keep t h e  d i s t inc t ion  i n  mind, 
because i f  general  coordinate transformations a r e  contemplated t h e  transforma- 
t i o n  law f o r  the  components of a contravariant vector  denoted by superscr ipts ,  
d i f f e r s  from t h a t  f o r  a vector denoted by subscr ipts .  The l a t t e r  vectors  a r e  
referred t o  as covariant vectors.  For a coordinate transformation T from 
a coordinate system x t o  a coordinate system y given by 

. ., x") 

t he  law of transformation f o r  t he  components of a contravariant vector  
given by (see  appendix A and r e f .  1) : 

Ai i s  

a j  

axi 
B'(y) = Ai(x) (3)  

where Ai(x) a re  the  contravariant components i n  the  x coordinate system and 
BJ(y) a r e  t h e  components when re fer red  t o  t h e  y coordinate system. For t h e  
same transformation of coordinates, other vectors,  such as t h e  gradient of a 
scalar  point function, obey a d i f f e ren t  transformation l a w .  
covariant vectors  denoted by subscr ipts .  The appropriate transformation l a w  
f o r  these vector components i s  (see appendix A )  

These a r e  the 

where Ai(x) a re  the  covariant components i n  the  x coordinate frame and 
Bj(y) a r e  t h e  covariant components when re fer red  t o  the  
A s  the following argument shows, t h e  d i s t inc t ion  between these two t ransf  orma- 
t t o n  laws vanishes when t h e  transformation T i s  orthogonal Cartesian. Let 
x1 be t h e  components of a pos i t ion  vector r when r e f e r r e d . t o  the  x coordi- 
nate  system which i s  orthogonal Cartesian.  Likewise, l e t  yJ be components 
of the same vector  when r e fe r r ed  t o  another orthogonal Cartesian system. 
transformation of coordinates T i s  given by 

y coordinate frame. 

- 

The 

4 



( 5 )  i j  yi = a . x  
J 

- 
where the  u$ are constants. The posit ion vector r i s  invariant  with 
respect t o  coordinate transformations. 
invariant .  Theref ore 

Hence the  square of t h e  vector i s  a l so  

xjxj =yiyi i i jxk = 8&jxk = ajap 
theref  ore 

i i  aj% = 8; 

where 8$ i s  t h e  Kronecker de l ta ,  t h a t  is ,  (see re f .  2) 

1 for j = k 

0 for j # k 

j 6k = 

Equation (6) i s . t h e  orthogonality condition which may be used t o  solvft equa- 
t i o n  ( 5 )  f o r  xJ. If both s ides  of equation ( 5 )  are multiplied by a’ k’ 

theref  ore 

Theref ore, 
j i i  x = a j y  

From equation ( 5 ) ,  it i s  seen t h a t  

- -  
ax j 

and from equation (7) 

It follows from equations (8) and ( 9 )  t h a t  

5 



. 
A s  a consequence of equation (lo), t he  d i s t inc t ion  between contravariant and 
covariant vectors disappears, when coordinate transformations a r e  confined t o  
orthogonal Cartesians systems. This a l s o  explains why the re  i s  no preoccupa- 
t i o n  w i t h  these  vectors i n  t h e  study of ordinary vector  analysis .  

- 
Base vectors.- Subscripts assigned t o  a system of base vectors a i  

indicate  t h a t  they a r e  covariant i n  character,  and obey the  convariant t rans-  
formation l a w .  See equation (4 )  and appendix A. Therefore, i f  Zi(X) a r e  a 
system of base vectors i n  the  x coordinate system, and b j (y )  a r e  t h e  cor- 
responding base vectors i n  the  y coordinate system, then 

- 
I n  t h i s  connection it should be noted t h a t  t o  every-system of base vector  
t he re  ex is t s  a reciprocal  system of base vectors  
property 

ai ,  
B1 with t h e  following 

(12) -J - j -  I J  a . a i = E i = a i .  a 

where 
1 f o r  j = i  

A superscript  i s  assigned t o  t h e  rec iproca l  base vectors  t o  ind ica te  t h e i r  
contravariant character, and t o  emphasize the  f a c t  that  they obey the  contra- 
var ian t  transformation l a w .  (See eq. (3) and appendix A.)  Hence,-jf a i ( x )  
a r e  t h e  rec iproca l  base vectors  i n  t h e  x coordinate system and bJ (y )  a r e  
the  corresponding vectors i n  the  y coordinate system, then 

- 

I n  a curvi l inear  coordinate system t h e  base vectors  are ,  i n  general, not un i t  
vectors, but a r e  functions of t h e  coordinates; t h a t  is, 

(14) 1 2  - - 
ai = ai(x x , .  . ., xn> 

The base vectors  may be obtained 9s follows: l e t  dF be the  d i f f e r e n t i a l  of 
a posit ion vector F and l e t  d x l  be t h e  correspogding d i f f e r e n t i a l s  of t h e  
posit ion components, Then by subs t i t u t ing  dF f o r  A, and dxi  f o r  A' i n  
equation (l), we have 

dy = ki5-i (16) 

6 



- From equation (15) t he  base vectors a i  a re  given by 

- I n  an orthogonal Cartesian frame of reference, t he  base vectors a i  const i -  
t u t e  a t r i a d  of mutually orthogonal un i t  vectors, t h a t  is, vectors of un i t  
length. However, i n  problem formulation, it i s  usually convenient t o  use a 
more general  curv i l inear  coordinate system. When t h i s  i s  done, t h e  magnitudes 
of t he  base vectors generally differ f r o m  unity. 

Vector Derivatives and t h e  Chris toffel  Symbols 

- The sca l a r  product of any two base vectors a i  and E j  may be defined a s  
follows : 

Likewise, t h e  sca l a r  product of t h e  reciprocal base vectors Xi and Z j  
defined as 

may be 

-i a .  zj = g i j  = $ . ai (19) 

The symmetry of 
Certain combinations of t h e  p a r t i a l  derivatives of t h e  sca l a r  products with 
respect t o  the  system coordinates a re  useful i n  obtaining t h e  der ivat ive of a 
vector, or i n  formulating t h e  equations of motion i n  a general  curv i l inear  
coordinate system. 
and are ca l led  Chr is tof fe l  symbols (see r e f .  3 ) .  
symbols, t h e  f irst  of which i s  defined a s  

gi j  and gij  fo l lows  from the nature of t h e  sca la r  product. 

The def in i t ions  t h a t  fo l low are ascribed t o  Chr i s to f f e l  
There a re  two of these 

The Chr i s to f f e l  symbol of t he  second kind i s  

The u t i l i t y  of t he  Chr is tof fe l  symbols i s  immediately apparent when an attempt 
i s  made t o  f ind  the  partial der ivat ive of a base vecLor, or i t s  reciprocal ,  
with respect t o  any system coordinate. Any vector A may be expressed i n  the 
form of equation (1). 
functions of t h e  coordinates, it follows that  t he  der ivat ive of A with 

Furthermore, since the base vectors a re  in-general 

7 



respect  t o  any coordinate must involve t h e  Chr i s to f f e l  symbols. 
t i o n  (l), t he  p a r t i a l  der iva t ive  of t h e  vector  
coordinate xk i s  given by 

From equa- 
A with respect  t o  t h e  

Likewise, 

and 

Since 

it follows t h a t  

From equations (23) through (26) 
azi - 

axj  
. ak = [ i j ,  k] - 

- 
From equation (12),  the  r a t e  of change of t he  base vector 
t o  x j  assumes the  form 

ai with respect 

(28) -k & - 2 = [ i j ,  k]a axJ 
Equation (28) gives the  required r a t e  of change of t he  base vector,  with 
respect  t o  a system coordinate, i n  terms of t h e  Chr i s to f f e l  symbol of t h e  
first kind and the  rec iproca l  base vectors.  
obtained i f  both s ides  of equation (28) a r e  mult ipl ied sca l a r ly  by the  recip-  
r o c a l  base vector Z 2  t o  y ie ld  

A more convenient form i s  

- 2  - . x 2  = [ i j ,  k]Zk a 
a q ,  
ax j 

From equation ( l g ) ,  it i s  seen t h a t  

-k - 2  k l  
a * a  = g  

8 



. 
theref  ore 

I n  terms of the  defining formula (211, equation (30) may be  rewr i t ten  as 
follows : 

Theref ore, 

By subs t i tu t ion  - of equation (32) i n  equation (22) the  p a r t i a l  der ivat ive of a 
vector A with respect  t o  the  system coordinate xk i s  

The indices  
a re  dum$ indices,  and may therefore  be replaced by any other convenient 
indices.  ai, equation (33) may be 
rewr i t ten  a s  follows 

i and 2 i n  t h e  second term on the r i g h t  s ide  of equation (33) 
- I n  order t o  have a common base vector 

Furthermore, s ince 

and 

aAi d x k  dAi 
axk at at 
- - = -  

the  i n t r i n s i c  der ivat ive,  or t h e  der ivat ive with respect t o  t i m e ,  may be 
obtained from equation (34) i n  the  following form: 

1 A s  already indicated,  a repeated index implies summation with respect  t o  
t h a t  index. 
re fer red  t o  a s  a dummy index. 
t he  index must be preserved. 

Since the  sunmation index can be changed a t  will, it i s  usual ly  
Of course, the range of admissible values of 

9 



I n  an orthogonal Cartesian reference frame 

Therefore, since a l l  these sca la r  products a re  constants, 
Chris toffel  syxhols vanish. I n  t h i s  case, the covariant I 

it 
e r  

follows t h a t  t h e  
vative,  (34) 

reduces t o  t h e  sum of the  p a r t i a l  der ivat ives  of t he  components along a s e t  
of fixed axes 

Likewise, the i n t r i n s i c  der ivat ive of a vector reduces t o  t h e  ordinary time 
r a t e s  of change of t he  components along a s e t  of f ixed axes. 

For a general  space of th ree  dimensions, equation (35) assumes t h e  form 

- 
d t  = [($ + fl) zl + ($ + fe) z2 + (g + f3) z3] 

f 2  = [Al({&}$ + {‘}& 12 d t  + 0%) + A 2 ( p } g  2 1  d t  + {2}g 22 d t  + {f3}g) 
+ A 3 ( f } e + {  2 }-+(‘}&)I dx2 

31 d t  32 d t  33 d t  

3 dxl  3 dx2 3 dxl  3 dx2 
f3  = [A1&} dt + (12) dt + {;3} $) +.A2({21} at + {2*} dt + {23} S) 

The formidable looking equations (36) through (39) for t h e  i n t r i n s i c  deriva- 
t i v e  of a vector i n  a general space of th ree  dimensions contain 27 
Chris toffel  symbols. Because of the  symmetry of t he  Chr is tof fe l  symbols, 

V 

{tj} = {h} 
10 



and the number of independent Chr is tof fe l  symbols reduces t o  18. 
f o r  t h e  three-dimensional spaces most commonly used, equation (36) reduces t o  
a manageable form. 
i n  a cy l ind r i ca l  coordinate system, 

Furthermore, 

If a base vector of uni t  length be denoted by g i ,  then 

- 
a1 = 31 , 

A s  a consequence of equations (41), t he re  are only two nonzero Chris toffel  
symbols i n  a cy l indr ica l  coordinate system, embedded i n  a space of three 
dimensions. These are  

{:2} = -xl 1 
ana 

Hence, a vector re fer red  t o  t h i s  coordinate system has a time r a t e  of change 
as follows: 

I n  three-dimensional spherical  coordinates, 

- A 

a 1  = a 1  f 

a2 = x1g2 , 
a3 = x1 s i n  x2a3 , 

g l l  = 1 

g22 = (x1)' 
- 

A 2 - 
g33 = (xl s i n  x') 

I n  t h i s  case the re  are six nonzero Chris toffel  symbols. These a re  

{A}= -xl {:3} = -s in  x2 cos x2 

(122) = {Zl} = 3 {;3} = {:> = 5 
= -x1 sin2 x2 {A} = {;2} = cot x2 

(44) 

(45) 



When these  values of t h e  Chr i s to f f e l  symbols a r e  subs t i tu ted  i n  equation (35), 
t h e  t i m e  r a t e  of change of a vector,  re fe r red  t o  a three-dimensional spher ica l  
coordinate system, assumes the  following form: 

+ [ ~ + { ~ 2 } ( A 1 $ + A 2 ~ ) + A 3 { 2 } ) d x 3 ] & 2  d t  33 dt 

+ [s + {3}(A1 + A3 e) d t  + {23}(.. e d t  + A3 g)] d t  Z3 (46) 

APPLICATIONS 

I n t r i n s i c  Derivatives of Certain Fundamental Vectors Associated 
With the  O r b i t s  of Planetary Bodies and Space Vehicles 

Certain fundamental vectors  associated with an o r b i t  i n  space, and which 
a r e  subject t o  change i n  t h e  presence of perturbing forces ,  provide a usefu l  
area of appl icat ion f o r  i n t r i n s i c  d i f f e ren t i a t ion .  One example of such a 
vector i s  the  angular momentum vector  h which l i e s  i n  t h e  d i r ec t ion  of t h e  
normal t o  the  o r b i t a l  plane. This vector may be used t o  determine the  orien- 
t a t ion  of an o r b i t a l  plane i n  space. Furthermore, t h e  r a t e  of change of 
t h i s  vector i n  t h e  presence of perturbing torques may be used t o  determine 

the  r a t e s  of change of o r b i t a l  plane 
inc l ina t ion  and nodal longitude. 
The i n t r i n s i c  der iva t ive  of a vector  
e, which l i e s  i n  the  o r b i t a l  plane 
and i s  d i rec ted  t o  t h e  perifocus,  
may be used t o  determine the  r a t e s  
of change of t he  argument of per i -  
focus and the  eccen t r i c i ty .  A 
t h i r d  vector  may be used t o  complete 
t h e  orthogonal t r i a d .  

- 

- x2 The angular momentum vector.  - 
Equation (35) may be used t o  obtain 
the  rates of change of t h e  angular 
momentum vector,  and hence the  
r a t e s  of change of t h e  o r b i t a l  e l e -  
ments defining the  or ien ta t ion  of 

spher ica l  coordinates, equation (35) 
assumes the  form shown i n  equa- 
t i o n  (46 ) .  The coordinate uses are 
chosen as follows (see  sketch ( a ) )  : 

X '  

A an o r b i t a l  plane i n  space. I n  
a 2  

Sketch (a)  

12 



1. -The g1 axis  is  taken t o  be coincident with t h e  angular momentum 
vector h. 

2. The & axis  i s  i n  the  d i rec t ion  of increasing polar angle, t h a t  

3 .  The t h i r d  ax is  & i s  i n  the  direct ion of t h e  ascending node l i n e  

is, i n  the  d i r ec t ion  of increasing o r b i t a l  plane inc l ina t ion .  

and completes t h e  mutually orthogonal triad of axes. 

I n  t h i s  coordinate system the  base vectors are given by equations (44). 
t h e  vector  

Let 
appearing i n  equation ( 4 6 )  have components as follows 

( 47) A 1 = h ,  A2 = A3 = 0 

When subs t i tu t ions  a re  made from equations (44), (4>), and (47) i n  equa- 
t i o n  (46), it i s  found t h a t  

I therefore  

- 
These a r e  the  component r a t e s  of change of the vector 
coordinate system with base vectors 
t o  use some other reference frame. 
re fer red  t o  t h e  r a d i a l  and t ransverse direc-  
t i o n s  i n  t h e  plane of t h e  orb i t ,  and i n  the  
d i rec t ion  of t h e  no- l to  t h e  o r b i t a l  
plane, t he  vector dh/dt should be t rans-  
formed t o  a reference frame having these 
direct ions.  If t h e  coordinatfts i n  t h i s  ref- 6 A 

2, 3, a coordinate transformation TI must be 
determined before the  components of 
can be  re fer red  t o  the  y coordinate frame. 
Let 
t h e  y coordinate system (see sketch ( b ) )  . 

h, re fer red  t o  the  x 
However, it m y  be more convenient 55. 

Assuming that the  perturbing forces  a re  
A A 

b3 bi 

erence frame be denoted by 9, where i=  1, I 

&/at 

b j (y)  be a system of base vectors i n  

In terms of t h e  natat ion already estab- 
l ished,  t he  transformation of base vectors 
assumes the  following form 

61 = -s in(y + w)& + cos(y + w)g3 

b2 = -cos(y + w)& - s in(y  + w)& 
A 

a3  A 

b3 = $1 
Sketch (b)  



If Ai(x) a r e  t he  components of ah/dt i n  t h e  x coordinate system and 
BJ(y) are the  corresponding components i n  the  y coordinate system, the  
transformation l a w ,  equation (3) gives  

Bj(y) 5= e Ai(x) 

However, 

See appendix A. 
a l te rna t ive  form 

Therefore, equation ( 3 )  may be wr i t ten  i n  the  following 

h 

Bj(y) = ( b j  $ i ) A i ( X )  

From equation (48) 

Subst i tut ing from equations (51) i n  equation ( 5 0 ) ,  and using equations (49) 
we obtain t h e  transformed coqonents  of t h e  vector &/at as follows 

dx2  2 dx3 
B1(y) = -h s in (y  + W) - + h cos(y  + w) s i n  x d t  

However, 

B3(y) = - ah 
d t  

- 
- = F X P  dE 
d t  

- where r i s  t h e  pos i t ion  vector of t he  planet-or space vehicle i n  the  y 
coordinate system with base vectors b j ,  and P i s  t h e  perturbing force  
vector.  Theref ore, 

\ 
A A  - - A 

r X = r b l  X (b jb j )  P 
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From equations (52) and ( 3 3 ) ,  it follows tha t  

- 0  h c o s ( y  + u) s i n  x2 dx3 - h s in(y  + u) - - d x 2  
d t  a t  

- 
h s in (?  + w) s i n  x2 + h c o s ( y  + w) - dx2 = r(:3 P) a t  a t  

- & dh - = r (b2 P) a t  
These equations give 

- - -  dx3 - r s in (y  + w) (g3 . p) 
a t  h sin x2 

( 5 5 )  

Equation (54) gives the  r a t e  of change of incl inat ion,  and equation ( 5 5 )  t he  
rate of change of nodal longitude. n 

The o r b i t a l  vector F.- Con- 
sider the  vector e, which l i e s  i n  
t h e  o r b i t a l  plane and i s  directed 
t o  the  perifocus. (See sketch (c)  
and ref. 4.) 
erence frame with coordinates 
denoted by 
a i  have the  following values: 

a1 = $1 

a2 = XI& 

a3 = $3 

- 

I n  a cy l indr ica l  r e f -  

xi, t h e  base vectors - 

( 5 6 )  

Sketch ( c )  

! 
- 

- 

- 

I n  t h i s  case, it should be noted 
t h a t  x2 i s  t h e  nodal longitude. 
I n  t h e  case previously considered, 
x2 w a s  t he  o r b i t a l  plane i n c l i m -  
t i o n .  I n  t h i s  reference frame, 
which i s  chosen because the  inf lu-  
ence of nodal longitude and o r b i t a l  plane incl inat ion appear i n  the  f o r m l a -  
t i on ,  t he  vector - 

e has components a s  follows (see appendix B and sketch (c)): 

- e = e (cos + sin is3 s i n  u cos i a;? + sin 
X I  

t h a t  is, 

- 2- 3- e = AIZi = A%= + A a2 + A a3 



where 
A1 = e cos w 

~2 = ( e  s i n  w cos i ) / x l  

A3 = e s i n  w s i n  i 

(57) 

I n  cy l indr ica l  coordinates, equation (35) assumes the  form shown i n  equa- 
t i o n  (43) .  Subst i tut ing from equations (42) and (37) i n  equation (43) gives 

CE = { [k ( e  cos w) - x1- dx2.  e s i n  w cos i] g1 
d t  dt  X 1  

s i n  w cos dx2 cos w + e - 
d t  X 1  

+ [%(e sinx; cos i 

d 
d t  + -  (e  s i n  w s i n  i)& 

Theref ore, 

CE = [(G cos w - e s i n  WC; - e - dx2 s i n  w cos i) 
d t  d t  

s i n  w cos i + e; cos w cos i - e - di s i n  w s i n  i + e - 
d t  d t  

s i n  w s i n  i + eL cos w s i n  i + e - di s i n  w cos i) $31 
d t  

These are the  component r a t e s  of change of t h e  vector F re fer red  t o  t h e  
coordinate system with base vectors  Zi .  
momentum vector, it may be more convenient t o  use some other reference frame. 
Assuming again t h a t  t he  perturbing forces  a re  re fer red  t o  t h e  radial  and 
transverse direct ions i n  the  plane of t he  orb i t ,  and i n  t h e  d i rec t ion  of t he  
normal t o  t h e  o r b i t a l  plane, t he  vector 
erence frame having these d i rec t ions .  A coordinate transformation T2 must 
be determined before t h e  components of can be re fer red  t o  t h i s  coor- 
dinate  frame. Let t he  base vectors  i n  t h i s  reference frame be again denoted 
by bj, then t h e  base vectors  

A s  i n  t h e  case of t h e  angular 

&/at must be transformed t o  a r e f -  

dZ/dt 
- 
b j  and Zi a r e  r e l a t ed  as follows: 

A 

b l  = cos(y + w ) & l  + s in(y  + w) cos ig2 + s in (y  + w) s i n  i& 

b2 = -s in(y + w ) a l  + cos(y + w) cos ia2 + cos(y + w) s i n  i a 3  

b3  = - s in  i& + cos ia3 

A A A h 

A 
A 

Corresponding t o  t h e  transformation of coordinates 
l a w  f o r  t he  components of t h e  vector dF/dt i s  given by equation (30). I n  
t h i s  case, the  components 
may be obtained from equation (58). 

T 2 ,  t h e  transformation 

Ai(x) appearing i n  the  r igh t  s ide of equation (50) 
They are  
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dx2 s i n  w cos i 

A2 = (6 s i n  w cos i + eij cos w cos i - e - d i  s i n  w s i n  i + e - dx2 cos w) } (60) 
a t  a t  

A3 = (6 s i n  w s i n  i + e& COS w s i n  i + e di s i n  w cos a t  
When subs t i tu t ions  are made from equations ( 3 9 )  and (60) i n  equation ( 5 O ) ,  it 
i s  found t h a t  t h e  vector 
t i o n s  of t h e  base vector 

dz/dt 

Ej 

has the  following comyonents i n  t h e  direc- 

) l  Bl(y> = (6 cos 7 + e a  s i n  y + e - dx2 a t  s i n  y cos i 

Bz(y) = (-G s i n  y + e; cos y + e - a2 d t  cos 7 cos i (61) 

B3(y) = (e a a t  s i n  w - e - s i n  i cos J 
I n  order t o  express t h e  r a t e  of change of t he  vector 
perturbing force  vector 
of a p a r t i c l e  i n  a noncentral, g rav i ta t iona l  force  f ie ld .  
equation ( B l 9 )  t h a t  

'E as a function of t h e  
P, it i s  necessary t o  examine t h e  equation of motion 

It i s  shown i n  

By equating components from equations (61) and (62), and remefiering t h a t  i n  
t h i s  case dx2/dt = dQ/dt, w e  obtain the  following equations: 

(63) d R  - 2h A 6 cos 7 + e& s i n  y = - (b2 P) - e 

e& cos y - 6 s i n  y = - (y s i n  g2 + CL tl) P - e a t  cos 7 cos i (64) 

s i n  7 cos i P 

- 

( 6 5 )  
- A 

s i n  i cos w = - s i n  7(b3 P) s i n  w - e - e -  at  
d R  
at  h 

The rate of change of t he  eccent r ic i ty  
argument of perifocus may be obtained by solving equations (63) and (64). 
When t h i s  i s  done, it i s  found t h a t  

e and t h e  r a t e  of t h e  change of the  
. 

- 
cos i] (66) 

- 
cos yfbl P) + -& s i n  y(2 + e cos 7)(;2 P) - - at 



It i s  seen t h a t  t he  influence of changes i n  t h e  longitude of t h e  ascending 
node i s  given by t h e  t h i r d  term on t h e  r i g h t  s ide  of equation (66), t h a t  is ,  

a; - = -cos i 
ah 

However, i f  the  argument of perifocus as measured from t h e  i n e r t i a l l y  f ixed 
X1 axis i s  denoted by 5, then 

Z = b + n  (68) 

I n  t h i s  case, the t o t a l  contr ibut ion from the  r a t e  of change of t he  nodal 
longitude i s  

From equation ( 5 5 )  
- 

6 3  PI h =  r s in(y  + w) 
h s i n  i 

theref  ore 

Subst i tut ing from equation (70) i n  equation (68) gives 

A 

k = { (& COS y )  + - r s i n  y ( 2  + e cos y)b2 + 
eh s in (y  + U)tan 

The derivation of t h i s  r e s u l t  should be compared with t h e  approach used i n  
reference 4, where spher ica l  geometry had t o  be used t o  determine t h e  in f lu -  
ence of inc l ina t ion  and nodal longitude. I n  t h a t  case, the  problem had t o  be  
solved i n  two par t s ,  whereas i n  the  present case the  problem i s  solved i n  one 
s t e p  without appeal t o  system geometry, subsequent t o  the  choice of curvi-  
l i n e a r  coordinates. 

Likewise, on solving equations (63) and (64) for G, it i s  found t h a t  

cos y ( 2  + e cos y )  + e 

If required, t he  r a t e  of change of t h e  semimajor axis may be obtained with the  
a i d  of equation ( 7 2 )  and t h e  following r e l a t ionsh ip  

h2 = p a ( 1  - e2) 

18 



. 

therefore  ah 
a t  2h - = p(1 - e2)$ - 2p.aei. 

theref  ore 

theref  ore 

Theref ore, 

* I  - A A = e [e s i n  ybl + (1 + e cos 7)b2 P 
h 

(73) 

Ames Research Center 
National Aeronautics and Space Administration 
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APPErJDIX A 

TRANSFORMATION FORMULAS FOR THE BASE VECTORS THEIR RECIPROCALS 

The transformation formulas and, hence, the  covariant or contravariant 
character of t h e  base vectors and t h e i r  reciprocals  may be obtained as 
follows: L e t  t he  d i f f e r e n t i a l  of a pos i t ion  vector be denoted by dF. Then 
i f  ?Zi(X) are t h e  base vectors  i n  t h e  x coordinate system, and E j (y )  t h e  
base vectors i n  the  y coordinate system, t h e  d i f f e r e n t i a l  aF may be 
expressed i n  t h e  following a l t e rna t ive  forms 

theref  ore 

Likewise, 

theref  ore 

- 
It i s  seen from equations (A2) and ( A 3 )  t h a t  t h e  base vectors  
obey the  covariant transformation l a w ;  consequently, t h e  use of subscr ipts  
i s  j u s t i f i e d .  

ai and b j  

Reciprocal Base Vectors 

To each system of base vectors 
vectors EJ with the  following property 

Bi  t he re  e x i s t s  a rec iproca l  system of 

where 8 i  i s  the  Kronecker de l ta ,  t h a t  is ,  

. 1 f o r  j = i  

o f o r  j # i 
6: = 

Scalar multiplication of each s ide  of equation (A2) by 
(A4)(see r e f .  3 )  

b j ( y )  gives on using 

20 
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Similarly,  from equations (A3) and (Ab)  it i s  seen that 

Equation ( A l )  r e f e r r ed  t o  the  reciprocal  system of base vectors assumes t h e  
form 

-. 
fi = Zi(x)aXi = bJ(y)dyj (A71 

theref  ore 

theref  ore 

and 

theref  ore 

From equations (A7)  and (A8) 

theref  ore 

Likewise, from equations ( A 7 )  and (AS) 

From equations (A10) and (All), it i s  seen that  t h e  rec iproca l  base vectors 
Z1, obey t h e  contravariant law of transformation; theref  ore, t h e  superscr ipt  
notat ion is  j u s t i f i e d .  

Vector Transformations 

Equations - (A10)  and ( A l l )  may be used t o  obtain the transformation law 
f o r  a vector A, where 

- 
A = Aizi = A j X j  (A121  
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- 
If = A i ( X ) E i ( x )  when the vector  A i s  re fer red  t o  t h e  x coordinate 
system, and i f  -A = Bj(y)bj(y)  when r e fe r r ed  t o  the  
invariance of A requires  t h a t  

y coordinate system, 

Bj (y)b j (y)  = Ai(x)Zi(x) (A13 1 

From equations (A2) and ( A l 3 ) ,  t he  appropriate transformation l a w  i s  obtained 
as follows: 

Bj(y) = a,j A i ( x )  axl  
Equation (A14) i s  t h e  contravariant  transformation l a w  f o r  the  components of 
t h e  vector A. When A i s  re fer red  t o  t h e  x coordinate system with base 
vectors E i (x ) ,  which obey the  covariant transformation l a w ,  t he  components 
Ai(x) obey t h e  contravariant tra_nsformation l a w ,  and, hence, t h e  use of 
superscr ipts  i s  j u s t i f i e d .  If A i s  re fer red  t o  the  rec iproca l  base system 
ai, then from equation (A12) 

- 
A = AiZi 

On a transformation of coordinates from the  x coordinate system t o  t h e  y 
coordinate system, the  invariance of A requires  t h a t  

From equations (A10) and ( A l 5 ) ,  t he  appropriate t r ans fo rmt ion  l a w  i s  obtained 
as follows 

- 
It i s  seen t h a t  when a vector  A i s  re fer red  t o  a coordinate system by use 
of reciprocal  base vectors,  which obey the  contravariant l a w ,  t h e  correspond- 
ing components of A obey t h e  covariant l a w ,  and the  use of subscr ipts  i s  
therefore ju s t i f i ed .  
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EQUATION OF MOTION OF A PARTICIX I N  A NONCENTRAL GRAVITATIONAL FORCE FIELD 

The equation of motion of a p a r t i c l e  of unit mass moving i n  an inverse- 
square law, cen t r a l  force f i e l d  i s  

Vector xrglt iplication of each s ide of equation ( B l )  by the  angular momentum 
vector h gives 

dt" rL 

- - -  * A  

h = r X V = ( 9 y ) b S  

On subs t i tu t ion  from equation (B3) i n  equation (B2) it i s  seen t h a t  

theref  ore 

The i n t e g r a l  of equation (B4) i s  given by 

- where e i s  a constant vector of integrat ion.  The vector F may be 
expressed i n  terms of i t s  sca l a r  magnitude and a vector of un i t  length a s  
follows : 

(B6) - A e = ea 

where & is  a vector of un i t  length. See sketch ( e ) .  Subst i tut ing equa- 
t i o n  (B6) i n  equation (B5) gives 

037) A 'Xh = il + ea 
CL 

- 
Equation (B7) may be solved t o  obtain the  posit ion vector 
p l i ca t ion  of each s ide  of equation (B7) by 7 
f o r  F: 

r. Scalar multi- 
gives  the  following equation 
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Theref ore 

and 

WI-1 r =  
1 + e cos y 

It i s  seen t h a t  
appearing i n  equation (B6), i s  the  o r b i t a l  eccent r ic i ty .  
of each s ide  of equation (B7) by h gives 

e, t he  magnitude of the  constant vector of in tegra t ion  
Vector mul t ip l ica t ion  

Therefore, 

With the  notat ion of sketch ( c ) ,  t he  u n i t  vector  
following form: 

$ may be expressed i n  the  

A A A 

a = (cos y )b l  - ( s i n  y)b2 
' 

If the assumption of an inverse-square l a w  c e n t r a l  force  f i e l d  i s  not satis- 1 
f ied ,  t h e  equation of motion must be modified accordingly. 
of a perturbing force 

I n  t h e  presence 
P, t he  equation of motion becomes 

- - 
dV - yr - -  - p - -  
d t  r3 

- 
Furthermore, i n  the  presence of t he  perturbing force  vector 
of constancy no longer appl ies  t o  the  vector  'E. Hence, 

P, t h e  assumption 

P g = { g X h + V X  ( F X P )  - &  [(Fx') X T I }  

Theref ore, 

and 

p - =  dz P x h + V x ( F x F )  
d t  

The f irst  term on t h e  r i g h t  s ide  of equation ( B l 3 )  may be wr i t t en  i n  t h e  fol- 
lowing a l t e rna t ive  form: - A A  A A  - 

P X E = h(blb2 - bzbl)  P 0314) 



Likewise, 

When subs t i tu t ions  a re  made from equations (Bg) and (Bl?),  t he  second term on 
t h e  r i g h t  s ide  of equation (B l3 )  assumes the form 

- A 

v x ( E ; x P ) = E  $1;~ + + (b2 h 
A 

Subs t i tu t ing  for a from equation (B10) i n  ( ~ 1 6 )  gives 

From equations (B14) and (B17) it follows t h a t  

Theref ore, 

h A A  A A  A A  E = bA1C2 - [F s i n  Y(b2b2 + b3b3) + - b2bl]} ? at P 
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